Sin2x = sinx - 2sin(x -3π/2) + 1
2sin(x)cos(x) = sin(x) + 2sin(3π/2 - x) + 1
2sin(x)cos(x) = sin(x) - 2cos(x) + 1
2sin(x)cos(x) + 2cos(x) - (sinx + 1) = 0
2cos(x)*(sinx + 1) - (sinx + 1) = 0
(sinx + 1)(2cosx - 1) = 0
sinx = -1 cosx = 1/2
x = -π/2 + 2πn | x = (+-)π/3 + 2πn
Ответ: 3π/2; 11π/6; 7π/3