Основание правильной пирамиды - равносторонний треугольник АВС. Вершина S правильной пирамиды проецируется в т.О – центр правильного треугольника АВС.
Сечение KLM- треугольник.
Искомая площадь S=a•h:2, где a=ML, h=KO
Угол МАL=60°, CL=BM, следовательно, AL=AM ⇒∆ AML – правильный.
АL=AM=9-3=6,⇒ ML=6
Высота основания AH=AB•sin60°=9√3/2=4,5√3
Грани пирамиды - равнобедренные треугольники.
По т.Пифагора из ∆ SHB:
SH²=SB²-BH²=144-20,25=123,75
По т. косинусов вычислим косинус ∠SAH:
SH²=SA²+AH² - 2•SA•HA•cos∠SAH
123,75=144+60,75 - 2•12•4,5√3•cosSAH
-81= -12•9√3•cos∠SAH
![cosSAH= \frac{-81}{-12*9 \sqrt{3} } = \frac{ \sqrt{3} }{4} cosSAH= \frac{-81}{-12*9 \sqrt{3} } = \frac{ \sqrt{3} }{4}](https://tex.z-dn.net/?f=cosSAH%3D+%5Cfrac%7B-81%7D%7B-12%2A9+%5Csqrt%7B3%7D+%7D+%3D+%5Cfrac%7B+%5Csqrt%7B3%7D+%7D%7B4%7D+)
Из ∆ KLM по т. косинусов
КО²=КА²+АО²-2•AO•KO•cos∠KAO
КА=SA-SK=12-3=9
AO=2/3 AH=3√3
КО²=81+27 - 2•9•3√3•√3):4
КО²=67,5
КО=1,5√30
S ∆KLM=0.5•6•1,5√30=4,5√30