Решение:
Область допустимых значений ОДЗ неравенства:х-2≠0=>x≠2; x>0;=> x∈(0;2)U(2;+∞).
Рассмотрим числитель и знаменатель
Числитель дроби при всех значениях х принадлежащих ОДЗ меньше 0
докажем это
для всех значений х
x < x+1
поэтому
Следовательно неравенство

доказано.
Поскольку числитель дроби отрицателен для всех значений х принадлежащих ОДЗ, то для истинности исходного неравенство необходимо что бы знаменатель был положителен.
х-2 >0
x > 2
Следовательно дробь отрицательно при всех значениях х∈(2;+∞)
Ответ: (2;+∞)