Исследуйте функцию и построй график y=x^3-3x^2+12 Даю 50 б

0 голосов
34 просмотров

Исследуйте функцию и построй график y=x^3-3x^2+12
Даю 50 б


Алгебра (94 баллов) | 34 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Дана функция  f(x) = x³  - 3x²  + 12.
График функции пересекает ось X при f = 0
значит надо решить уравнение:
x³ - 3 x² + 12 = 0.
Решаем это уравнение
Точки пересечения с осью X:
Аналитическое решение даёт 2 комплексных и один действительный корень:
x_1=- \frac{1}{3} \sqrt[3]{54 \sqrt{6}+135 }- \frac{3}{ \sqrt[3]{54 \sqrt{6} +135} } +1.
Численное решение
x_{1} = -1,6128878.

График пересекает ось Y, когда x равняется 0:
подставляем x = 0 в x^3 - 3*x^2 + 12.
0^{3} - 0 + 12.
Результат:
f(0) = 12.
Точка:
(0, 12).

Для того, чтобы найти экстремумы, нужно решить уравнение
{d}{dx} f(x) = 0. (производная равна нулю),  и корни этого уравнения будут экстремумами данной функции:
$$\frac{d}{d x} f{\left (x \right )} = $$
Первая производная
3x² - 6x = 0 или 3х(х - 2) = 0.
Решаем это уравнение.
Корни этого уравнения:
x_{1} = 0.
x_{2} = 2.
Значит,  экстремумы в точках:
(0, 12)
(2, 8)

Интервалы возрастания и убывания функции:
Найдём интервалы, где функция возрастает и убывает, а также минимумы и максимумы функции, для этого смотрим как ведёт себя функция в экстремумах при малейшем отклонении от экстремума:
Минимумы функции в точках:
x_{2} = 2.
Максимумы функции в точках:
x_{2} = 0.
Убывает на промежутках (-oo, 0] U [2, oo).
Возрастает на промежутках [0, 2].

Найдем точки перегибов, для этого надо решить уравнение
{d^{2}}{d x^{2}} f(x ) = 0, (вторая производная равняется нулю),
корни полученного уравнения будут точками перегибов для указанного графика функции: {d^{2}}{d x^{2}} f(x) = 6х - 6.
Вторая производная 6(х - 1) = 0.
Решаем это уравнение.
Корни этого уравнения x_{1} = 1.

Интервалы выпуклости и вогнутости:
Найдём интервалы, где функция выпуклая или вогнутая, для этого посмотрим, как ведет себя функция в точках перегибов:
вогнутая на промежутках [1, oo),
выпуклая на промежутках (-oo, 1].

Горизонтальные асимптоты найдём с помощью пределов данной функции при x->+oo и x->-oo
\lim_{x \to -\infty}\left(x^{3} - 3 x^{2} + 12\right) = -∞.
Значит, горизонтальной асимптоты слева не существует.
\lim_{x \to \infty}\left(x^{3} - 3 x^{2} + 12\right) = ∞.
Значит, горизонтальной асимптоты справа не существует.

Наклонную асимптоту можно найти, подсчитав предел функции x^3 - 3*x^2 + 12, делённой на x при x->+oo и x ->-oo
$$\lim_{x \to -\infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты слева не существует.
\lim_{x \to \infty}\left(\frac{1}{x} \left(x^{3} - 3 x^{2} + 12\right)\right) = ∞.
Значит, наклонной асимптоты справа не существует.

Проверим функци чётна или нечётна с помощью соотношений f = f(-x) и f = -f(-x).
Итак, проверяем:
\^{3} - 3 x^{2} + 12 = - x^{3} - 3 x^{2} + 12
- Нет.
x^{3} - 3 x^{2} + 12 = - -1 x^{3} - - 3 x^{2} - 12
- Нет.
значит, функция не является ни чётной, ни нечётной.

График дан в приложении.

(309k баллов)