Первый вариант. Поскольку данный в условии рисунок ввел меня в заблуждение,
начнем с построения по условию.
Пусть дана окружность радиуса R=ВС=15(центр В). Хорда СЕ=18,
а То есть прямая СМ должна включать диаметр этой окружности. Но по условию центр О первой окружности должен лежать на прямой АВ.
То есть пересечение прямых СМ и АВ и даст нам центр первой окружности. Проведем ВК перпендикулярно СЕ. По свойству радиуса, перпендикулярного хорде, СК=СЕ/2 или СК=18:2=9.
Имеем прямоугольную трапецию КСОВ, в которой СО=ОВ (радиусы первой окружности).
Проведем высоту трапеции ОН. Пусть СО=х. Тогда НВ=КВ-СО или НВ=(12-х) и по Пифагору ОН²=ОВ²-НВ² или х²-(12-х)²=81,
отсюда 24х=225, х=9,375.
Ответ:R=9,375.
Второй вариант:
При внимательном рассмотрении оказалось, что можно решить и с приведенным в условии рисунком.
Смотрите второе приложение.
Проведем ВК перпендикулярно СЕ.
По пифагору ВК=√(ВС²-СК²) или ВК=√(225-61)=12.
Прямоугольная трапеция СКВО, в которой Проведем высоту ВН трапеции.
ВН=СК=9.
ОВ=ОС=х (искомый радиус).
Тогда по Пифагору из треугольника ОНВ:
(х-12)²+9²=х².
х²-24х+144+81=х².
-24х+225=0.
24х=225.
х=225/24=9,375.
Ответ: R=9,375.