Вычислительной угол между диагональю ВД1 и плоскостью боковой грани АА1В1В, если АВ=4,...

0 голосов
71 просмотров

Вычислительной угол между диагональю ВД1 и плоскостью боковой грани АА1В1В, если АВ=4, ВС=5√3, АА1=3


Геометрия (183 баллов) | 71 просмотров
0

какая геометрическая фигура?

Дан 1 ответ
0 голосов

Дано: АВСДА₁В₁С₁Д₁ - (в условии не указано что это)
          ВД₁ - диагональ
          АВ=4, ВС= 5√3, АА₁=3
Найти: ∠А₁ВД₁ -?


1) Пусть АВСДА₁В₁С₁Д₁ - прямоугольный параллелепипед, тогда вычислим по формуле ВД₁²=АВ²+ВС²+АА₁²=4²+(5√3)²+3²=100, ВД₁=√100=10
2) Так как АВСДА₁В₁С₁Д₁ прямоугольный параллелепипед, то в Δ А₁В  ∠А=90°, тогда находим по теореме Пифагора  А₁В²=АА₁²+АВ²=25, А₁В=√25=5
а также ΔА₁Д₁В - прямоугольный,то cos острого угла равен отношению катета, выходящего из этого угла, к гипотенузе; 
находим cos ∠А₁ВД₁=А₁В/Д₁В=5/10=1/2=60°

Ответ: ∠А₁ВД₁=60°

(8.1k баллов)