Даю 15 баллов! Срочно! Пожалуйста, помогите! Значения переменных x и y таковы, что выполняются равенства x+y=6, xy=-3. Найдите значение выражения: 1) x^4+y^4 Ответ: 1746. Нужно решение.
X + y = 6 xy = - 3 -------------- x = 6 - y y( 6 - y ) = - 3 6y - y^2 = - 3 y^2 - 6y - 3 = 0 D = 36 + 12 = 48 √ D = √ 48 = 4 √ 3 y1 = ( 6 + 4 √ 3 ) : 2 = 3 + 2 √ 3 y2 = 3 - 2 √ 3 x = 6 - y x1 = 6 - ( 3 + 2 √ 3 ) = 3 - 2 √ 3 x2 = 6 - ( 3 - 2 √ 3 ) = 3 + 2 √ 3 -------------------------------------------- x^4 = ? 1) ( 3 - 2 √ 3 )^4 = ? ( 3 - 2 √ 3 )^2 = 9 - 12*3 + 4*3 = 9 - 36 + 12 = - 15 ( 3 - 2 √ 3 )^4 = - 15 * ( - 15 ) = 225 2) ( 3 + 2 √ 3 )^2 = 9 + 12*3 + 4*3 = 9 + 36 + 12 = 57 ( 3 - 2 √ 3 )^4 = 57 * 57 = 3249 ------------------------------------------- 1) X^4 + y^4 = 225 + 3249 = 3474 2) X^4 + y^4 = 57 + 225 = 282
Огромное спасибо! Вы меня спасли!