основаниемпирамидыслужитправильныйтреугольниксторонакоторогоравна3дм одно из боковых...

0 голосов
56 просмотров

основаниемпирамидыслужитправильныйтреугольниксторонакоторогоравна3дм одно из боковых ребер равно 2 дм и перпендикулярно основанию найти радиус описанной сферы.


Геометрия (12 баллов) | 56 просмотров
Дан 1 ответ
0 голосов
Центр описанной сферы находится на равном расстоянии от всех вершин пирамиды. Геометрическим местом точек, равноудалённых от вершин данного треугольника в пространстве, является перпендикуляр к плоскости этого треугольника, проходящий через центр его описанной окружности, который, поскольку треугольник правильный, является по совместительству точкой пересечения медиан, высот, срединных перпендикуляров и биссектрис треугольника, которые для правильного треугольника совпадают. Расстояние от центра правильного треугольника до любой из его вершины равно двум третям его высоты, т.е. 3√3/2*2/3дм=√3дм. Центр описанной сферы должен также находиться на одном и том же расстоянии от двух концов бокового ребра, перпендикулярного основанию. Рассмотрим срединный перпендикуляр для этого ребра, пересекающий указанный выше перпендикуляр к плоскости. Он будет находиться на расстоянии 2дм/2=1дм от плоскости основания, а точка его пересечения с указанным перпендикуляром к плоскости основания есть центр искомой сферы. Следовательно, в прямоугольном треугольнике, образуемым вершиной основания при перпендикулярном ребре, центром основания и центром описанной сферы один катет равен √3дм, второй 1дм, а гипотенуза, равна √(3+1)=√4=2дм - искомый радиус описанной сферы. 

Ответ: 2дм.
(29 баллов)