Правильной называется такая пирамида, у которой в основании лежит правильный многоугольник, а вершина пирамиды проецируется в центр основания.
Основание правильной шестиугольной пирамиды состоит из 6 правильных треугольников.
Для ответа на вопрос задачи нужно знать длину стороны основания и высоту пирамиды.
Сторона =1, высоту найдем из объема
Формула объема пирамиды:
V=S•h:3, где S – площадь основания, h – высота пирамиды. ⇒
h=3V:S
S= площади 6 правильных треугольников, площадь каждого а²√3):4
S=6•1²•√3):4=1,5√3⇒
h=3•6:1,5√3=4√3
Обозначим высоту пирамиды SO, а СО - отрезок, соединяющий одну из вершин основания и его центр.
СО=1, т.к. О- общая вершина правильных треугольников, составляющих правильный шестиугольник.
Боковое ребро найдем по т.Пифагора из прямоугольного ∆ SOC.
SC=√(SO²+OC²)=√(48+1)=7 (ед. длины)