Вставьте слова в пропуски. 2. В параллелограмм вписана окружность. Найдите стороны...

0 голосов
46 просмотров

Вставьте слова в пропуски.

2. В параллелограмм вписана окружность. Найдите стороны параллелограмма, если его периметр равен 36 см.

Решение. Пусть стороны параллелограмма равны а и b см. Тогда а+__=b+__ (теорема _____). Отсюда следует,что а__b, то есть параллелограмм является ________, поэтому сторона ромба равна 36__4=__см.

3. Найдите площадь четырехугольника АВСЕ,если его периметр равен 60 см, а радиус вписанной окружности равен 5 см.

Решение. Соединим центр вписанной окружности с вершинами четырехугольника. Получим ______ треульника. Проведем радиусы в точки касания Н,___,___ и ____. Отрезки ОН, ___, ___ и ___ будут __________________ к сторонам АВ, ВС, ___ и ___ (_________________ касательной). Тогда площадь четырехугольника АВСЕ=площади треульника АВО+площади треугольника ВСО+______+_____=1/2АВ*___+___ВС*___+_____+_____=___*r*(АВ+ВС+___+___)=1/2r*периметр АВСЕ=1/2*___*___=___ см^2.


Геометрия (722 баллов) | 46 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

2. В параллелограмм вписана окружность.
Найдите стороны параллелограмма, если его периметр равен 36 см.   
Решение. Пусть стороны параллелограмма равны а и b см. Тогда а+a=b+b (теорема В описанном четырёхугольнике суммы противоположных сторон равны). Отсюда следует,что а=b, то есть параллелограмм является ромбом, поэтому сторона ромба равна 36/4=9см. 
3. Найдите площадь четырехугольника АВСЕ, если его периметр равен 60 см, а радиус вписанной окружности равен 5 см.   
Решение. Соединим центр вписанной окружности с вершинами четырехугольника. Получим 4 треугольника. Проведем радиусы в точки касания Н,K,L и M. Отрезки ОН, OK, OL и OM будут перпендикулярны к сторонам АВ, ВС, CD и AD (радиус к касательной). Тогда площадь четырехугольника АВСЕ=площади треульника АВО+площади треугольника ВСО+CDO+DAO=1/2АВ*OH+1/2ВС*OK+1/2CD*OL+1/2AD*OM= 1/2*r*(АВ+ВС+CD+AD)=1/2r*периметр АВСЕ=1/2*5*60=150 см^2.  

(47.5k баллов)