Вычислим частные производные: ∂u/∂x=2x, ∂u/∂y=2y, ∂u/∂z=-4z.
∂v/∂x=3yz, ∂v/∂y=3xz, ∂v/∂z=3xy.
Нормальный вектор №1: (2x, 2y, -4z)/√(4x²+4y²+16z²)=(x,y,-2z)/√(x²+y²+4z²)
№2: (yz,xz,xy)/√(y²z²+x²z²+x²y²); Ищем скалярное произведение:
(xyz+xyz-2xyz)/√((x²+y²+4z²)(y²z²+x²z²+x²y²))=0