Находим ОДЗ: cos(3x/2)≠0 , 3x/2≠π/2+πn , x≠π/3+2πn/3 , где n∈Z
sinx=cos3x/2
сos(π/2-x)-cos3x/2=0
-2 sin((π/2+x/2)sin(π/2-5x/2)=0
a) sin(π/2+x/2)=0 , π/2+x/2=πn , x/2= -π/2+πn , x1=-π+2πn, где n∈Z
b) sin(π/2-5x/2)=0 , π/2-5x/2=πn , 5x/2=π/2-πn , x2=π/5-2πn/5 , где n∈Z
Ответ: х=π/5-2πn/5, но x≠π+2πn , где n∈Z