Сделаем замену y=пx, тогда получаем уравнение
sin(y) = 1, это элементарное тригонометрическое уравнение, решаем его
y = (п/2) + 2пn, где n пробегает все целые числа. Делаем обратную замену
пx = (п/2) + 2пn, теперь разделим последнее уравнение на пи,
x = (1/2) + 2n,
по условию, выделим из данного семейства решений лишь положительные решения, то есть x>0.
(1/2) + 2n>0; <=> 2n>-1/2, <=> n>-1/4. n является целым, среди целых только n>=0 удовлетворяют n>-1/4.
Итак, x=(1/2) + 2n, где n целое и n>=0.
наименьшим из таких иксов будет икс при n=0 (при возрастании номеров n, значения x=x(n) = (1/2) + 2n, лишь возрастают).
При n=0, x=1/2.