Найти корни sinx+1/2=0 x∈[0;3p] sinx-1/2=0 x∈[-p/2;3p/2] sinx+√2/2=0 x∈[-3p;0]...

0 голосов
46 просмотров

Найти корни
sinx+1/2=0 x∈[0;3p]
sinx-1/2=0 x∈[-p/2;3p/2]
sinx+√2/2=0 x∈[-3p;0]
sinx-√2/2=0 x∈[-3p/2;5p/2]
sinx+√3/2=0 x∈[-2p;2p]


Алгебра | 46 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

1) sinx = -1/2;
x = (-1)^(n+1)* arcsin(|-1/2|) + pi*n;
x = (-1)^(n+1)* pi/6) + pi*n; n ∈ Z

n = 0; x = -pi/6 ∉[0;3p]
n = 1; x = pi/6 + pi = 7pi/6 ∈[0;3p]
n = 2; x = -pi/6 + 2pi = 11pi/6  ∈[0;3p]
n = 3; x = pi/6 + 3pi ∉[0;3p]
Ответ:  x = 7pi/6 ∪ x = 11pi/6

2)  sinx = 1/2;
x = (-1)^(n)* arcsin1/2) + pi*n;
x = (-1)^(n)* pi/6)+ pi*n; n ∈ Z

n = -1; x = -pi/6 - pi ∉ [-p/2;3p/2]
n = 0; x = pi/6 ∈[-p/2;3p/2]
n = 1; x = -pi/6 + pi = 5pi/6 ∈[-p/2;3p/2]
n = 2; x = pi/6 + 2pi ∉[-p/2;3p/2]
Ответ:  x = pi/6 ∪ x = 5pi/6 

3) sinx = -√2/2;
x = (-1)^(n+1)* arcsin(|-√2/2|) + pi*n;
x = (-1)^(n+1)* pi/4) + pi*n; n ∈ Z

n = -4; x = -pi/4 - 4pi ∉[-3p;0]
n = -3; x = pi/4 - 3pi = -11pi/4 ∈[-3p;0]
n = -2; x = -pi/4 -2pi = -9pi/4 ∈[-3p;0]
n = -1; x = pi/4 - pi = - 3pi/4 ∈[-3p;0]
n = 0; x = -pi/4 ∈[-3p;0]
n = 1; x = pi/4 + pi ∉[-3p;0]
Ответ:  x = -11pi/4 ∪ x =  -9pi/4 ∪ x = pi/4 - pi ∪ x = -pi/4

4)  sinx = √2/2;
x = (-1)^(n)* arcsin(√2/2) + pi*n;
x = (-1)^(n)* pi/4)+ pi*n; n ∈ Z

n = -2; x = pi/4 - 2pi = -7pi/4 ∉[-3p/2;5p/2]
n = -1; x = -pi/4 - pi = - 5pi/4 ∈[-3p/2;5p/2]
n = 0; x = pi/4 ∈[-3p/2;5p/2]
n = 1; x = -pi/4 + pi = 3pi/4 ∈[-3p/2;5p/2]
n = 2; x = pi/4 + 2pi = 9pi/4 ∈[-3p/2;5p/2]
n = 3; x = -pi/4 + 3pi ∉[-3p/2;5p/2]
Ответ:  x = -5pi/4 ∪ x = pi/4 ∪ x = 3pi/4 ∪ x = 9pi/4

5) sinx = -√3/2;
x = (-1)^(n+1)* arcsin(|-√3/2|) + pi*n;
x = (-1)^(n+1)* pi/3) + pi*n; n ∈ Z

n = -2; x = -pi/3 - 2pi ∉[-2p;2p]
n = -1; x = pi/3 - pi = -2pi/3;
n = 0; x = -pi/3 ∈[-2p;2p]
n = 1; x = pi/3 + pi = 4pi/3 ∈[-2p;2p]
n = 2; x = -pi/3 + 2pi = 5pi/3  ∈[-2p;2p]
n = 3; x = pi/3 + 3pi ∉[-2p;2p]
Ответ:  x = -2pi/3 ∪ x = -pi/3 ∪ x =4pi/3 ∪ x = 5pi/3

(2.0k баллов)