Решите задачу:Из одной точки проведены две касательные к окружности. Докажите, что...

0 голосов
35 просмотров

Решите задачу:Из одной точки проведены две касательные к окружности. Докажите, что отрезки касательных, заключенных между этой точки и тачками касания равны


Геометрия (16 баллов) | 35 просмотров
Дан 1 ответ
0 голосов

Обозначим точку, из которой проведены касательные - А, а точки касания - В и С. Отметим также центр окружности О. Имеем два прямоугольных треугольника АВО и АСО с прямыми углами В и С соответственно. У них АО - общая, а ОВ и ОС равны как радиусы одной окружности. Таким образом, рассматриваемые треугольники равны по гипотенузе и катету. Следовательно, равны и другие катеты - АВ и АС.

(762 баллов)