Пусть 5x^2 + x - 1 = t , тогда
t^2 - t - 2 = 0
D = 1 + 4*2 = 9
t₁ = (1+ 3 )/2 = 2;
t₂ = ( 1 - 3)/2 = - 1;
Получим 2 случая
1)
5x^2 + x - 1 = 2
5x^2 + x - 3 = 0
D = 1 + 4*5*3 = 61
x₁ = ( - 1 + √61)/10;
x₂ = ( - 1 - √61)/10
2)
5x^2 + x - 1 = - 1
5x^2 + x = 0
x (5x + 1) = 0
x₃= 0 ;
5x + 1 = 0 ==> x₄ = - 1/5 = - 0,2