ЕАВСД - пирамида. AC>ВД. АН=ВН, Н∈АВ.
В тр-ке АВЕ ЕН - высота. Так как АН=ВН и ЕН⊥АВ, то ΔАВЕ - равнобедренный. ЕА=ЕВ.
Пусть диагонали основания равны х и у, тогда х-у=14, х=у+14.
Площадь основания (ромба): S=ху/2=у(у+14)/2=(у²+14у)/2.
Объём пирамиды: V=Sh/3=30(у+14у)/6=1200 ⇒
у²+14у-240=0,
у1≠-24, у2=10.
ВД=10 см, АС=10+14=24 см.
В тр-ке АВО АО=АС/2=12 см, ВО=ВД/2=5 см. АВ²=АО²+ВО²=169,
АВ=13 см.
В тр-ке АВД ДН - медиана. ДН=0.5√(2АД²+2ВД²-АВ²)=√(АВ²+2ВД²)=√(13²+2·10²)≈19.2 см.
АН<ДН, значит ребро ЕА меньше ребра ЕД. Следовательно нужно найти угол ЕАН.<br> В тр-ке ЕНА tg(ЕАН)=EH/AH=30/6.5=60/13.
∠ЕАН=arctg(60/13)≈77.77° - это ответ.