Помогите пожалуйста номер 20

0 голосов
40 просмотров

Помогите пожалуйста номер 20


image

Алгебра (33 баллов) | 40 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
\left \{ {{(x-1)(2y+1)=0} \atop {2y^2+x-y=7}} \right. \\\\
x=7-2y^2+y\\\\
(7-2y^2+y-1)(2y+1)=0\\
(y-2y^2+6)(2y+1)=0\\
-2y^2+y+6=0 \ |\cdot(-1)\\
2y^2-y-6=0\\
D=1+48=49; \sqrt{D}=7\\\\
y_{1/2}= \frac{1\pm7}{4}\\\\
y_1=- \frac{3}{2}\\\\
y_2=2\\\\2y+1=0\\2y=-1\\y_3=-\frac{1}{2}\\\\ (x-1)(2\cdot2+1)=0\\
5(x-1)=0\\
x-1=0\\
x_1=1\\\\
(x-1)(- \frac{3}{2}\cdot2+1)=0\\
-2(x-1)=0\\
x_2=1\\\\ 2\cdot(-\frac{1}{2})^2+x+\frac{1}{2}=7\\ x+1=7\\x_3=6


Ответ: x_1=1, y_1=2;\\\\ x_2=1, y_2=- \frac{3}{2} \\\\ x_3=6, y_3=-\frac{1}{2}
(4.5k баллов)
0

Можно было и проще решить, но уже оставим, как есть

0

здравствуйте, ведь в формуле нахождени дискриминанта b2-4ac а не + , тогда почему у вас 1+48

0

АА ничего ничего спасибо огромное это я затупил