Пусть MO - перпендикуляр, данный по условию, а данный треугольник будет треугольником ABC. Т.к. точка M равноудалена от всех вершин треугольника, то AO=OC=OB из равенства треугольников AOM, BOM и COM(по двум сторонам). Значит O - центр описанной около треугольника ABC окружности. Значит AO=BO=CO - радиусы этой окружности. R = abc/4S, где S - площадь треугольника ABC, a,b и с - его стороны, S найдем по формуле S=√(p(p-a)(p-b)(p-c)), значит R = 24*27*29/√40*16*13*11 (расчеты производить не буду, ибо такие расчеты только под калькулятор). Треугольник AOM прямоугольный, MO = 14 по условию, AO = R, найдем AM - расстояние от M до вершины треугольника ABC. AM = √(14²+R²) = √(196+R²). Угол MAO - угол, образованный этим расстоянием с плоскостью, в которой лежит треугольник ABC. И угол MAO = arcsin(14/AM).