0\\ x^{2}+x-12<0 D=b^{2}-4\cdot a\cdot c\\ D=1^{2}-4\cdot 1\cdot (-12)=49\\ X_{1}=\frac{-b+\sqrt{D}}{2a}\\\\ X_{1}=\frac{-1+7}{2}=3\\\\ X_{2}=\frac{-1-7}{2}=-4" alt="-x^{2}-x+12>0\\ x^{2}+x-12<0 D=b^{2}-4\cdot a\cdot c\\ D=1^{2}-4\cdot 1\cdot (-12)=49\\ X_{1}=\frac{-b+\sqrt{D}}{2a}\\\\ X_{1}=\frac{-1+7}{2}=3\\\\ X_{2}=\frac{-1-7}{2}=-4" align="absmiddle" class="latex-formula">
Далее метод интервалов:
______+________|____________-_______|________+________>
-4 3
Ответ: (-4;3)
2. ![2x^{3}-8x=0\\ 2x(x^{2}-4)=0\\ 2x=0; x=0\\ x^{2}-4=0; x^{2}=4; x=2; x=-2. 2x^{3}-8x=0\\ 2x(x^{2}-4)=0\\ 2x=0; x=0\\ x^{2}-4=0; x^{2}=4; x=2; x=-2.](https://tex.z-dn.net/?f=2x%5E%7B3%7D-8x%3D0%5C%5C+2x%28x%5E%7B2%7D-4%29%3D0%5C%5C+2x%3D0%3B+x%3D0%5C%5C+x%5E%7B2%7D-4%3D0%3B+x%5E%7B2%7D%3D4%3B+x%3D2%3B+x%3D-2.+)
Ответ: х=0; х=2; х=-2.