Помогите пожалуйста подробно решить неравенства. даю 22 балла
1 ОДЗ x>0,x≠1,x+1>0⇒x>-1 x∈(0;1) U (1;∞) 2log^-1(x)36=log(6)x log(6)x+log(6)(x+1)≤1 log(6)(x²+x)≤1 x²+x≤6 x²+x-6≤0 x1+x2=-1 U x1*x2=-6⇒x1=-3 U x2=2 -3≤x≤2 U x∈(0;1) U (1;∞) Ответ x∈(0;1) U (1;2] 2 ОДЗ x-1>0⇒x>1 2x-4>0⇒x>2 x∈(2;∞) log(2)[(x-1)²/(2x-4)]>1 (x-1)²/(2x-4)>2 (x-1)²/(2x-4)-2>0 (x²-2x+1-4x+8)/(2x-4)>0 (x²-6x+9)/(2x-4)>0 (x-3)²/(2x-4)>0 x-3=0⇒x=3 2x-4=0⇒x=2 _ + + --------------(2)--------------(3)-------------------- Ответ x∈(2;3) U (3;∞) 3 ОДЗ x-1>0⇒x>1 x+1>0⇒x>-1 (x+1)/(x-1)>0⇒x<-1 U x>1 (x+1)/(x-1)≠1⇒x+1≠x-1 x∈(1;∞) log[(x+1)/(x-1)]2>log(2)(x+1)-log(2)(x-1) log[(x+1)/(x-1)]2>log(2)[(x+1)/(x-1)] log[(x+1)/(x-1)]2>1/log[(x+1)/(x-1)] log[(x+1)/(x-1)]2=a a-1/a>0 (a²-1)/a>0 (a-1)(a+1)/a>0 a=1 a=-1 a=0 _ + _ + ---------------(-1)-----------(0)--------------(1)------------ -1(x-1)/(x+1)<2<br>(x-1-2x-2)/(x+1)<0<br>(x+3)/(x+1)<0⇒-3<x<-1 не удов усл<br>a>1⇒log[(x+1)/(x-1)]2>1 (x+1)/(x-1)<2<br>(x+1-2x+2)/(x-1)<0<br>(3-x)/(x-1)<0<br>x<1 U x>3 U x>1 Ответ x∈(3;∞)