В па­рал­ле­ло­грам­ме ABCD диа­го­на­ли AC и BD пе­ре­се­ка­ют­ся в точке M....

0 голосов
96 просмотров

В па­рал­ле­ло­грам­ме ABCD диа­го­на­ли AC и BD пе­ре­се­ка­ют­ся в точке M. До­ка­жи­те, что пло­щадь па­рал­ле­ло­грам­ма ABCD в че­ты­ре раза боль­ше пло­ща­ди тре­уголь­ни­ка BMC.


Геометрия (208 баллов) | 96 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Отметим  ΔАВМ и ΔМВС.Ввиду того,что точка М делит основание ΔАВС на 2 равных части,то имея одинаковые основания и равную по величине  высоту,опускающуюся из вершины В у обоих Δ,эти треугольники имеют одинаковые объемы.Аналогично докажем и о Δ АМД и ΔДМС.А так,как эти Δ тоже равны,то ΔАВМ=ΔМВС=ΔАМД=ΔДМС;
Что и требовалась доказать.

(3.9k баллов)