Решите тригонометрическое уравнение: √3sinx+cosx=√2
√3sinx+cosx=√2
√3/2sinx+1/2cosx=√2/2 sinπ/6sinx+cosπ/6cosx=√2/2 cos(x-π/6)=√2/2 (x-π/6)=±arcos√2/2+2πn(n ∈ Z) x=±π/4+π/6 +2πn(n ∈ Z) x=5π/12+2πn(n ∈ Z) и x=-π/12+2πn(n ∈ Z)