Решение
3log₇X -l ogx7 = 1
ОДЗ: x > 0; x ∈ (0; + ∞)
3log₇ (x) - log₇7 / log₇ (x) = 1
3log²₇ (x) + log₇ (x) - 1 = 0
log₇ (x) = t
3t² + t - 1 = 0
D = 1 + 4*3*1 = 13
t₁ = (- 1 - √13)/6 не удовлетворяет ОДЗ.
t₂ = (- 1 + √13)/6
log₇ (x) = (- 1 + √13)/6
x = [7^(- 1 + √13)/6]