"В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину,...

0 голосов
51 просмотров

"В треугольнике ABC биссектриса BE и медиана AD перпендикулярны и имеют одинаковую длину, равную 28. Найдите стороны треугольника ABC."


Геометрия (15 баллов) | 51 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Я вроде уже делал эту задачку. Все очень просто. 
Точка пересечения BE и AD обозначена мной, как K.
Треугольник BAD равнобедренный, потому что биссектриса угла B (то есть - BK) перпендикулярна основанию AD. 
AK = KD = 14;
Это означает, что AB = BD = BC/2.
Само собой, отсюда сразу же следует AE = EC/2, поскольку BE - биссектриса.
Если теперь провести через точку E прямую EF II AD, то DF = CF/2; (F лежит на BC)
Это означает, что DF = BD/3; следовательно, KE = BK/3;
Отсюда BK = 21; KE = 7; 
AB = √(14^2 + 21^2) = 7√13; BC = 14√13;
AE = √(7^2 + 14^2) = 7√5; AC = 21√5;


(69.9k баллов)