Вариант решения.
Пусть точки касания вневписанной окружности с продолжениями сторон АВ и ВС треугольника АВС будут
Р и
М.
Центр О вписанной в угол окружности окружности
лежит на его биссектрисе.
СО - биссектриса угла АСМ, ВО - биссектриса угла РВМ.
Центр О лежит на их пересечении.
Центр К вписанной в треугольник ВСА окружности также лежит на пересечении его биссектрис ВН и СК.
Центры вписанной и вневписанной окружностей лежат на одной прямой ВО как вписанные в один угол.
Угол КСО - половина развернутного угла АСМ ( т.к. состоит из половин смежных углов). ⇒
Угол КСО=90°
Треугольник АВС - равнобедренный, ⇒
ВН его биссектриса, высота, медиана. ⇒
ВН перпендикулярна АС и делит её пополам.
АН=
НС=12:2=
6
Треугольник КСО - прямоугольный,
СН - его высота, КО - гипотенуза.
Высота прямоугольного треугольника, проведенная из прямого угла к биссектрисе, есть среднее пропорциональное отрезков, на которые делит её.
Отрезок
КН =
r =
радиус вписанной окружности в треугольник АВС
.
Отрезок ОН=
R=8 -
радиус вневписанной окружности.
СН²=КН*НО
36=r*8 ⇒
r=36:8=4,5
см. рисунок во вложении.
-------
[email protected]