Помогите, пожалуйста, решить задачу: Боковая сторона равнобокой трапеции, описанной около окружности, равна а, а один изуглов - 60°. Найдите площадь трапеции,
1) Давай с чертежом разберёмся. Трапеция АВСD. Основания АD (нижнее) и ВС( верхнее), Угол А = 60, угол В = 120, Точка О - центр окружности. Из точки О проведём перпендикуляр к ВС ( радиус) Появилась точка К. ΔВОК прямоугольный с углом 60 и 30 ( весь угол В = 120) 2) Из В опустим высоту ВМ. ΔАВМ прямоугольный с гипотенузой = а и углом 30 АМ = а/2 по т Пифагора ВМ = а√3/2 ( это высота трапеции) 3) ΔВКО КО = а√3/4 (половина ВМ) ВК =х ВО = 2х Составим по т. Пифагора 3х² = 3а²/16⇒ х² = а²/16⇒х = а/4 4) ВC = а/2, АD=3а/2 5) Площадь трапеции = произведению полусуммы оснований на высоту. S =(а/2 + 3а/2)·а√3/2 :2 = 2а ·а√3/2 :2 = а²√3/2