У''-4у'+4у=0 как решить

0 голосов
25 просмотров

У''-4у'+4у=0 как решить


Математика (15 баллов) | 25 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

У нас уравнение вида y''+py'+qy    p=-4   q=4

такое уравнение - линейное  второго порядка с постоянными коэффициентами.  Решим это однородное у-е, для чего составим характеристическое ур-е
k^2-4k+4=0    ⇒ (k-2)^2=0    один корень сдвоенный k1=2
Решение дифф. уравнения имеет вид  y(x)=C1*e^(k1*x) +C2*x*e^(k1*x) =
=C1*e^(2x)+C2*x*e^(2x)   это ответ, можно записать в виде
=e^(2x)*(C1+C2*x)

(187k баллов)