РЕШИТЕ, ПОЖАЛУЙСТА ,В1,В3, С1-С2. ЗАДАНИЕ ВО ВЛОЖЕНИИ, 1 ВАРИАНТ
B1 (sin55sin9-cos55sin(90-9))/(cos32-cos58)(cos32+cos58)= =(sin55sin9-cos55cos9)/2sin13sin45*2cos13cos45= =-cos64/(√2/2*√2/2*sin26)=-2cos64/sin(90-64)=-2cos64/cos64=-2 B3 1/2*sinx√(16-x²)=0 ОДЗ (4-х)(4+х)≥0⇒x∈[-4;4] 16-x²=0⇒x=-4 U x=4 sinx=0⇒x=πn+ОДЗ⇒x={-π;0;π} C1 (1-cosπ/6)²/4+(1-cos7π/6)²/4+(1-cos5π/6)/4+(1-cos11π/6)/4= cos7π/6=-cosπ/6 cos5π/6=-cosπ/6 cos11π/6=cosπ/6 =(1-cosπ/6)²/4+(1+cosπ/6)²/4+(1+cosπ/6)/4+(1-cosπ/6)/4= =1/2(1-2cosπ/6+cos²π/6+1+2cosπ/6+cos²π/6)=1/2(2+2cos²π/6)= =1+cos²π/6=1+1/4=1,25 C2 2cos²y-1+4acosy+2a²+1=0 2cos²y+4acosy+2a²=0 2(cos²y+2acosy+a²(=0 2(cosy+a)=0 cosy+a=0 cosy=-a -a<-1⇒a>1 U -a>1⇒a<-1<br>a∈(-∞;-1) U (1;∞)