В треугольнике авс ав=4 ,ас=6,угол а =60 найти медиану ам решить методом координат

0 голосов
262 просмотров

В треугольнике авс ав=4 ,ас=6,угол а =60 найти медиану ам решить методом координат


Геометрия (27 баллов) | 262 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Медиана треугольника это половина диагонали параллелограмма, построенного на сторонах этого треугольника, как на векторах. То есть это половина суммы векторов ab и ac.
Но сумма двух векторов дает результирующий вектор, модуль которого можно найти по теореме косинусов и он равен:
    |{ab} + {ac|² = |{ab}|²+|{ac|² - 2|{ab}|*|{ac}|*cos({ab},{ac}), где cos({ab},{ac}) это косинус угла между векторами {ab} и {ac}, когда они соединены по правилу сложения векторов - конец первого - начало второго.
В нашем случае угол между векторами будет равен 120°, модуль вектора |ab|=4, модуль вектора |ac|=6, а косинус угла между ними равен Cos120°= -0,5.
Тогда модуль суммы этих векторов равен |m|= √(16+36+2*4*6*0,5) = √76=2√19. Искомая медиана am (модуль вектора am) равна половине этой суммы, то есть √19.
Ответ: АМ=√19.

(117k баллов)