Дан прямоугольный треугольник ABC, в котором угол C = 90 градусов. a, b - катеты, с -...

0 голосов
68 просмотров

Дан прямоугольный треугольник ABC, в котором угол C = 90 градусов. a, b - катеты, с - гипотенуза, a1 и b1 - соотвествующие проекции катетов a и b на гипотенузу c. Найдите стороны a, b, с, если известно, что a1 = 4,2 м; b1 = 5,8 м.

Срочно надо решить!


Геометрия (152 баллов) | 68 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Нарисуйте треугольник с высотой из прямого угла на гипотенузу. 

Найдите гипотенузу - она равна сумме отрезков  a₁ и b₁. А дальше примените свойства высоты прямоугольного треугольника:

 

В прямоугольном треугольнике справедливы следующие соотношения:

1) h² = a₁ · b₁;
2) b² = b₁ · c;
3) a² = a₁ · c,

где b₁ и a₁ - проекции катетов b и a на гипотенузу.

Иными словами:
Высота, опущенная на гипотенузу прямоугольного треугольника, есть среднее пропорциональное между отрезками гипотенузы, на которые она той высотой разделена.


Катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией того катета на гипотенузу.


Осталось в формулы подставить значения проекций катетов и гипотенузы,- они у Вас есть - а в подстчетах калькулятор тоже поможет.

(228k баллов)