пусть AB=26, а BC=32, а угол ABC=150 градусов. тогда, рассмотрим треугольник ABC:
по теореме косинусов AC^2=AB^2+BC^2-2*AB*BC*cosABC
потом рассмотришь треугольник BDC, в котором угол BCD=30 градусов (сумма соседних углов в паралеллограмме равна 180 градусам)
по теореме косинусов BD^2=CD^2+BC^2-2*CD*BC*cosBCD
потом из треугольника BOC опять же по теореме косинусов находишь косинус угла BOC
по основному тригонометрическому тождеству (sin^2(x) + cos^2(x)=1) находишь синус угла BOC
потом применяешь формулу площади параллелограмма: S=1/2*BD*AC*sinBOC