Дано: sinα=3/5, cosβ=4/5
0<α<π/2, 0<β<π/2<br>вычислить: cos(α+β), cos(α-β)
решение.
sin²α+cos²α=1
(3/5)²+cos²α=1, cosα=+-√16/25, т.к. 0<α<π/2,<br>cosα=4/5
аналогично, sib²β+cos²β=1
sin²β+(4/5)²=1, => cosβ=3/5
cos(α+β)=cosα*cosβ-sinα*sinβ=(4/5)*(4/5)-(3/5)*(3/5)=16/25-9/25=7/25
cos(α-β)=cosα*cosβ+sinα*sinβ=(4/5)*(4/5)+(3/5)*(3/5)=16/25+9/25=25/25=1