Решите уравнение 4sin2x=tgx [-П;0]

0 голосов
91 просмотров

Решите уравнение 4sin2x=tgx [-П;0]


Математика (30 баллов) | 91 просмотров
Дан 1 ответ
0 голосов

4sin2x=tgx [-π;0];⇒8sinx·cosx-sinx/coss=0⇒sinx(8cosx-1/cosx)=0⇒
sinx=0⇒x=kπ;k∈Z;
8cosx-1/cosx=0⇒8cos²x=1⇒cos²x=1/8;⇒cosx=⁺₋1/2√2;
cosx=√2/4⇒x=arccos√2/4+2πk,k∈Z;⇒∉[-π;0]
cosx=-√2/4⇒x=arccos-√2/4+2πk,k∈Z;
ответ:x=kπ,k∈Z;
x=arccos-√2/4+2kπ,k∈Z

(25.1k баллов)