Cos(x-y)(tgx tgy-1)+(1+tgx tgy)cos(x+y) 30 баллов!

0 голосов
70 просмотров

Cos(x-y)(tgx tgy-1)+(1+tgx tgy)cos(x+y)
30 баллов!


Алгебра (186 баллов) | 70 просмотров
Дан 1 ответ
0 голосов

Решите задачу:

cos(x-y)*(tgx*tgy-1)+(1+tgx*tgy)*cos(x+y)=

=cos(x-y)*(\frac{sinx}{cosx}*\frac{siny}{cosy}-1)+(1+\frac{sinx}{cosx}*\frac{siny}{cosy})*cos(x+y)=

=cos(x-y)*\frac{sinx*siny-cosx*cosy}{cosx*cosxy}+cos(x+y)*\frac{cosx*cosy+sinx*siny}{cosx*cosy}=

=\frac{cos(x-y)*(sinx*siny-cosx*cosy)}{cosx*cosy}+\frac{cos(x+y)*(cosx*cosy+sinx*siny)}{cosx*cosy}=

=\frac{cos(x-y)*(sinx*siny-cosx*cosy)+cos(x+y)*(cosx*cosy+sinx*siny)}{cosx*cosy}=

=cos(x-y)(sinxsiny-cosxcosy)+cos(x+y)(cosxcosy+sinxsiny)

=(cos(x)cos(y)+sin(x)sin(y))(sin(x)sin(y)-cos(x)cos(y))+
+(cos(x)cos(y)-sin(x)sin(y))*(cos(x)cos(y)+sin(x)sin(y))=

=sin^2(x)sin^2(y)-cos^2(x)cos^2(y)+cos^2(x)cos^2(y)-sin^2(x)sin^2(y)=
=0


(4.6k баллов)
0

Спасибо большое)