Найти производную тригонометрической функции sin^3(ln(x)^4)

0 голосов
51 просмотров

Найти производную тригонометрической функции
sin^3(ln(x)^4)


Математика (37 баллов) | 51 просмотров
Дано ответов: 2
0 голосов
Правильный ответ

Согласно правилу нахождения производной сложной функции

(sin³(ln⁴x))' = 3 * sin²(ln⁴x) * ( sin(ln⁴x))' = 3 * sin²(ln⁴x) * cos(ln⁴x)) *(ln⁴x)' =

3 * sin²(ln⁴x) * cos(ln⁴x)) * 4 * ln³x * (ln x)' = 12 * sin²(ln⁴x) * cos(ln⁴x)) * ln³x / x

(54.9k баллов)
0 голосов

ищем производную на основании формул производной сложной функции и производных основных элементарных функций

 

(sin^3(ln(x)^4))'=3*sin^2(ln(x)^4)* (sin(ln(x)^4))'=

=3*sin^2(ln(x)^4)* cos(ln(x)^4)* (ln(x)^4)'=

=3*sin^2(ln(x)^4)* cos(ln(x)^4)*4*(ln(x)^3)* (ln(x))'=

=.12*sin^2(ln(x)^4)* cos(ln(x)^4)*(ln(x)^3)\x

(409k баллов)