13^2n+1+2*4^n
Для получения некоторых выводов начнем подставлять значения n,начиная с единицы.
Для того,чтобы число было кратно 5,необходимо,чтобы последней его цифрой был 0 или 5,поэтому исследуем лишь последнюю цифру числа,а не его целиком.
Итак:
n=1
первое слагаемое заканчивается на цифру 7 ,второе на цифру 8 (4^1*2) их сумма будет 15,число заканчивается на 5,следовательно кратно пяти.
n=2
первое слагаемое заканчивается на цифру 3,второе на цифру 2(4^2*2) их сумма будет 5,число заканчивается на 5,следовательно кратно пяти.
А теперь самое главное,какое бы n не продолжили подставлять в результате всегда будет получаться 2 комбинации (7+8 или 3+2,проверте сами),т.е. мы рассмотрели все возможные варианты,на основании которых мы можем сделать заключение,что данное выражение,при натуральном n,кратно пяти.