0\\
y =\frac{48}{x};\\
x^2+\left(\frac{48}{x}\right)^2=100;\\
x^2+\frac{48^2}{x^2}=100;\\
x^2=t;\ \ t>0;\\
t+\frac{2304}{t}-100=0;\\
t^2-100t+2304=0;\\
D=100^2-4\cdot1\cdot2304=10000-9216=784=(\pm28)^2;\\
t_1=\frac{100-28}{2}=\frac{72}{2}=36;\ \ x=\pm6;\ \ y=\pm8;\\
t_2=\frac{100+28}{2}=\frac{128}{2}=64;\ \ x=\pm8;\ \ y=\pm6;\\" alt=" \left \{ {{x^2+y^2=100} \atop {xy=48}} \right.\\
x\neq0;\\y\neq0;\\xy>0\\
y =\frac{48}{x};\\
x^2+\left(\frac{48}{x}\right)^2=100;\\
x^2+\frac{48^2}{x^2}=100;\\
x^2=t;\ \ t>0;\\
t+\frac{2304}{t}-100=0;\\
t^2-100t+2304=0;\\
D=100^2-4\cdot1\cdot2304=10000-9216=784=(\pm28)^2;\\
t_1=\frac{100-28}{2}=\frac{72}{2}=36;\ \ x=\pm6;\ \ y=\pm8;\\
t_2=\frac{100+28}{2}=\frac{128}{2}=64;\ \ x=\pm8;\ \ y=\pm6;\\" align="absmiddle" class="latex-formula">
имеем 4 ответа (-8;-6);(-6;-8);(6;8);(8;6).