Вычислите площадь фигуры ограниченной линиями y=x^2 y=2x

0 голосов
43 просмотров

Вычислите площадь фигуры ограниченной линиями y=x^2 y=2x


Алгебра (16 баллов) | 43 просмотров
Дан 1 ответ
0 голосов

В первую очередь нарисуй  рисунок. Обе линии являются параболами. Только у первой параболы "рога" направлены вниз, а у второй - вверх. Эти параболы пересекаются в 2 точках. Точки пересечения можно найти приравняв уравнения кривых друг другу:
3-x^2 = 2x^2
Получаете простое квадратное уравнение и решаете его. Находите две точки пересечения - корни уравнения х1 = а, х2 = b, (При этом а < b). Поставьте эти точки на рисунке и проведите из них вертикальные прямые к точкам пересечения парабол - х = а и х = b . А теперь сделайте так - заштрихуйте косой штриховкой фигуру, ограниченную линиями:
у = 3-x^2, у = 0, х = а, х = b
А теперь заштрихуйте обратной косой штриховкой фигуру, ограниченную линиями:
y=2x^2, у = 0, х = а, х = b
В результате эта фигура будет заштрихована в клеточку, а та фигура, площадь которой мы ищем в полосочку ( обычной косой штриховкой) .
Для того, чтобы найти площадь фигуры, заштрихованной в клеточку достаточно вычислить определенный интеграл от функции (2x^2)dx в пределах от а до b. А для того, чтобы вычислить площадь фигуры, заштрихованной обоими видами штриховки, надо вычислить определенный интеграл от функции (3 - x^2)dx в пределах от a до b.
Если Вы честно нарисовали рисунок, то, посмотрев на рисунок, Вы сразу догадаетесь, как найти площадь фигуры заштрихованной в полосочку, зная площади фигур заштрихованных в клеточку и обоими видами штриховки.
Удачи!

(221 баллов)