1) 2sin(2x - π/3) + 1 = 0
sin(2x - π/3) = - 1/2
2x - π/3 = (-1)^(n)*arcsin(-1/2) + 2πn, n∈Z
2x - π/3 = (-1)^(n+ 1)*arcsin(1/2) + 2πn, n∈Z
2x - π/3 = (-1)^(n+ 1)*(π/6) + 2πn, n∈Z
2x = (-1)^(n+ 1)*(π/6) + π/3 + 2πn, n∈Z
x = (-1)^(n+ 1)*(π/12) + π/6 + πn, n∈Z
2) cos²x + 3sinx - 3 = 0
1 - sin²x + 3sinx - 3 = 0
sin²x - 3sinx + 2 = 0
a) sinx = 1
x = π/2 + 2πk, k∈Z
b) sinx = 2, не удовлетворяет условию: IsinxI ≤ 1