![image](https://tex.z-dn.net/?f=%5Ccos%5Calpha%3D%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B4%7D%3B%5C+%5C+%5Cfrac%5Cpi2%3C%5Calpha%3C%5Cpi%3B%5C%5C%0A%5Cforall+%5Calpha%5Cin%5Cleft%28%5Cfrac%5Cpi2%3B%5Cpi%5Cright%29%3A%5C%5C%0Actg%5Calpha%3C0%3B%5C+%5C+tg%5Calpha%3C0%3B%5C+%5C+%5Csin%5Calpha%3C0%3B%5C+%5C+%5Ccos%5Calpha%3E0%3B%5C%5C%0A%5Csin%5Calpha%3D-%5Csqrt%7B1-%5Ccos%5E2%5Calpha%7D%3D-%5Csqrt%7B1-%5Cleft%28%5Cfrac%7B%5Csqrt6%7D%7B4%7D%5Cright%29%5E2%7D%3D-%5Csqrt%7B1-%5Cfrac%7B6%7D%7B16%7D%7D%3D%5C%5C%0A%3D-%5Csqrt%7B%5Cfrac%7B16%7D%7B16%7D-%5Cfrac6%7B16%7D%7D%3D-%5Csqrt%7B%5Cfrac%7B16-6%7D%7B16%7D%7D%3D-%5Csqrt%7B%5Cfrac%7B10%7D%7B16%7D%7D%3D-%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B4%7D%3B%5C%5C%0Atg%5Calpha%3D%5Cfrac%7B%5Csin%5Calpha%7D%7B%5Ccos%5Calpha%7D%3D%5Cfrac%7B-%5Cfrac%7B%5Csqrt%7B10%7D%7D%7B4%7D%7D%7B%5Cfrac%7B%5Csqrt%7B6%7D%7D%7B4%7D%7D%3D-%5Csqrt%7B%5Cfrac%7B5%7D%7B3%7D%7D%3B%5C%5C)
0;\\
\sin\alpha=-\sqrt{1-\cos^2\alpha}=-\sqrt{1-\left(\frac{\sqrt6}{4}\right)^2}=-\sqrt{1-\frac{6}{16}}=\\
=-\sqrt{\frac{16}{16}-\frac6{16}}=-\sqrt{\frac{16-6}{16}}=-\sqrt{\frac{10}{16}}=-\frac{\sqrt{10}}{4};\\
tg\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{-\frac{\sqrt{10}}{4}}{\frac{\sqrt{6}}{4}}=-\sqrt{\frac{5}{3}};\\" alt="\cos\alpha=\frac{\sqrt{6}}{4};\ \ \frac\pi2<\alpha<\pi;\\
\forall \alpha\in\left(\frac\pi2;\pi\right):\\
ctg\alpha<0;\ \ tg\alpha<0;\ \ \sin\alpha<0;\ \ \cos\alpha>0;\\
\sin\alpha=-\sqrt{1-\cos^2\alpha}=-\sqrt{1-\left(\frac{\sqrt6}{4}\right)^2}=-\sqrt{1-\frac{6}{16}}=\\
=-\sqrt{\frac{16}{16}-\frac6{16}}=-\sqrt{\frac{16-6}{16}}=-\sqrt{\frac{10}{16}}=-\frac{\sqrt{10}}{4};\\
tg\alpha=\frac{\sin\alpha}{\cos\alpha}=\frac{-\frac{\sqrt{10}}{4}}{\frac{\sqrt{6}}{4}}=-\sqrt{\frac{5}{3}};\\" align="absmiddle" class="latex-formula">