В прямоугольном треугольнике один катет длиннее другого ** 3, а площадь равна 18. Найдите...

0 голосов
32 просмотров

В прямоугольном треугольнике один катет длиннее другого на 3, а площадь равна 18. Найдите длину гипотенузы.


Геометрия (97 баллов) | 32 просмотров
Дан 1 ответ
0 голосов
Правильный ответ

Пусть х- меньший катет,y-гипотенуза тогда х+3-большый катет.

1)Площадь прямоугольного треугольника равно половине произведения его катетов т.е. S=(х*(х+3))/2=18 значит х^2+3x=18

2)По теореме Пифагора квадрат гипотенузы равен сумме квадратов катетов т.е.

y^2=x^2+(x+3)^2=x^2+(x^2+6x+9)=2*(x^2+3x)+9. из п.2 x^2+3x=18 т.е.

2*(x^2+3x)+9=36+9=45=у^2

у=Квадратный корень из 45.

(369 баллов)