![image](https://tex.z-dn.net/?f=%5Clog_4%2816-2x%29%3D2%5Clog_43%3B%5C%5C%0AD%28f%29%3A%5C+16-2x%3E0%3B%5C%5C%0A2x%3C16%3B%5C%5C%0Ax%3C8%3B%5C%5C%0AD%28f%29%3Ax%5Cin%5Cleft%28-%5Cinfty%3B8%5Cright%29%3B%5C%5C%0A%5Clog_4%2816-2x%29%3D2%5Clog_43%3B%5C%5C%0A%5Clog_4%2816-2x%29%3D%5Clog_43%5E2%3B%5C%5C%0A%5Clog_4%2816-2x%29%3D%5Clog_49%5C%5C%0A4%5E%7B%5Clog_4%2816-2x%29%7D%3D4%5E%7B%5Clog_49%7D%5C%5C%0A16-2x%3D9%3B%5C%5C%0A2x%3D16-9%3B%5C%5C%0A2x%3D7%3B%5C%5C%0Ax%3D%5Cfrac72%3D3%2C5%3B%5C%5C%0Ax%3D3%2C5.)
0;\\
2x<16;\\
x<8;\\
D(f):x\in\left(-\infty;8\right);\\
\log_4(16-2x)=2\log_43;\\
\log_4(16-2x)=\log_43^2;\\
\log_4(16-2x)=\log_49\\
4^{\log_4(16-2x)}=4^{\log_49}\\
16-2x=9;\\
2x=16-9;\\
2x=7;\\
x=\frac72=3,5;\\
x=3,5." alt="\log_4(16-2x)=2\log_43;\\
D(f):\ 16-2x>0;\\
2x<16;\\
x<8;\\
D(f):x\in\left(-\infty;8\right);\\
\log_4(16-2x)=2\log_43;\\
\log_4(16-2x)=\log_43^2;\\
\log_4(16-2x)=\log_49\\
4^{\log_4(16-2x)}=4^{\log_49}\\
16-2x=9;\\
2x=16-9;\\
2x=7;\\
x=\frac72=3,5;\\
x=3,5." align="absmiddle" class="latex-formula">