Объём призмы равен произведению площади основания на высоту.
При
разделении плоскостью, проходящей через середины сторон трапеции высоты получившихся призм одинаковы, и нужно
показать, что линия пересечения плоскости с основанием делит его на две
равные по площади фигуры. Это легко. Для основания: S трап = 0,5 (а + в) h
Линия
пересечения проходит через середины оснований, значит, она рассекает
каждое основание на две равные части: 0,5а и 0,5а; 0,5в и 0,5в.
получившиеся фигуры - тоже трапеции и площади их равны: S лев = S прав = 0,5 (0,5а + 0,5в) h.
Итак,
площади оснований половинок призмы - одинаковы, а высота - как была,
так и осталась Н. Следовательно, и получившиеся призмы - равновелики.,
т.е. равны по объёму