
чтобы оно было нужно доказать что m(m+1)(m+3) делится нацело на 6,
так как m, m+1, m+2 - три последовательные целые числа,
то хотя бы одно из них обязательно делится на 2, и одно из них обязательно делится на 3, поэтому произведение трех последовательных целых чисел делится неацело на 6, что соотвествует требуемому в утверждении задачи. Доказано