Первый уровень
1. Рассмотрим треугольники АОС и DOB. Они равны по второму признаку равенства треуг-ов: сторона и два прилежащих к ней угла одного треуг-ка соответственно равны стороне и двум прилежащим к ней углам другого:
- ВО=СО по условию;
- - У равных треугольников равны соответственные стороны АС и BD, а также углы A и D.
2. Рассмотрим треугольники РОК и NOM. Они равны по первому признаку равенства: две стороны и угол между ними одного треуг-ка соответственно равны двум сторонам и углу между ними другого:
- РО=NO по условию;
- КО=МО по условию;
- У равных треугольников равны соответственные стороны MN и РК и углы М и К.
3. Треугольники ANP и MPN равны по двум сторонам и углу между ними:
- АN=МР по условию;
- NP - общая сторона;
- У равных треугольников ANP и MPN равны соответственные стороны MN и АР и углы М и А.
4. Рассмотрим треугольники АВС и ADC. Они равны по двум сторонам и углу между ними:
- AB=AD по условию;
- АС - общая сторона;
- У равных треугольников равны соответственные стороны ВС и DC, а также углы B и D.
5. Треугольники ADB и CDB равны по третьему признаку равенства: три стороны одного треугольника соответственно равны трем сторонам другого:
- АВ=СВ по условию;
- AD=CD по условию;
- BD - общая сторона.
У равных треугольников равны соответственные углы ABD и CBD.
Второй уровень:
1. Треугольники MNS и PNT равны по двум сторонам и углу между ними:
- MN=PN по условию;
- MS=PT по условию;
- Треугольники MNT и PNS равны по двум сторонам и углу между ними:
- MN=PN по условию;
- MT=PS (MT=MS+ST, PS=PT+ST, но MS=PT по условию, значит MT=PS);
- углы М и Р равны как углы при основании равнобедренного по условию треугольника MNP.
2. Рисунок виден не полностью
3. Пусть высота будет ВН. Треугольники АНВ и СНВ равны по двум сторонам и углу между ними:
- АН=СН по условию;
- ВН - общая сторона;
- углы АНВ и СНВ прямые.
У равных треугольников равны соответственные стороны АВ и СВ, значит АВС - равнобедренный.
4. Рассмотрим треугольник АОВ. Он равнобедренный, т.к. углы при его основании АВ равны. Значит АО=ВО.
Рассмотрим треугольники САО и DBO. Они равны по двум сторонам и углу между ними:
- СА=DB по условию;
- АО=ВО как доказано выше;
- Треугольники CAВ и DBA равны по двум сторонам и углу между ними:
- СА=DB по условию;
- АВ - общая сторона;
-
5. Треугольники ADC и ADB равны по двум сторонам и углу между ними:
- CD=BD по условию;
- AD - общая сторона;
- У равных треугольников равны соответственные стороны АС и АВ. Значит АВС - равнобедренный.