В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины...

0 голосов
38 просмотров

В прямоугольном треугольнике угол между высотой и медианой, проведенными из вершины прямого угла, равен 28 градусам.Найдите больший из острых углов этого треугольника


Математика (15 баллов) | 38 просмотров
Дан 1 ответ
0 голосов
Правильный ответ
Пусть острые углы данного треугольника равны А и В. Мы имеем медиану, проведённую из вершины прямого угла, делющую его на два равнобедренных треугольника с углами при основании, которые являются катетами, равными, соответственно А+В=90град.
Высота делит треугольник на два прямоугольных треугольника с острыми углами А и В. Вернемся к данным и учтем, что прямой угол состоит из 28град. и двух меньших острых углов, пусть это угол В, он будет равен  (90-28):2=
31град. Следовательно больший угол равен 90-31=59град.

(882 баллов)