66 баллов Прошу решить, также включить в решение одз.

0 голосов
28 просмотров

66 баллов
Прошу решить, также включить в решение одз.


image

Алгебра (2.8k баллов) | 28 просмотров
0

конец неравенства <1

Дано ответов: 2
0 голосов
Правильный ответ
image0} \atop {log_{\frac{1}{2}}(x^2-1)>0 \right. \; \left \{ {{x\in (-\infty,-1)U(1,+\infty)} \atop {log_2(x^2-1)<0}} \right. " alt="log_3log_{\frac{1}{2}}(x^2-1)<1,\; \; OOF:\; \left \{ {{x^2-1>0} \atop {log_{\frac{1}{2}}(x^2-1)>0 \right. \; \left \{ {{x\in (-\infty,-1)U(1,+\infty)} \atop {log_2(x^2-1)<0}} \right. " align="absmiddle" class="latex-formula">

 \left \{ {{x\in (-\infty,-1)U(1,+\infty)} \atop {x^2-1<1}} \right. \; \left \{ {{x\in (-\infty,-1)U(1,+\infty)} \atop {x^2-2<0}} \right. \; \left \{ {{x\in (-\infty,-1)U(1,+\infty)} \atop {x\in (-\sqrt2,+\sqrt2)}} \right. \; \to

x\in (-\sqrt2,-1)U(1,\sqrt2)\\\\log_3log_{\frac{1}{2}}(x^2-1)<1

log_3log{\frac{1}{2}}(x^2-1)<log_33,\\\\log_{\frac{1}{2}}(x^2-1)<3

-log_2(x^2-1)<3,

image-3,\; -3=log_22^{-3}=log_2\frac{1}{8}\\\\x^2-1>\frac{1}{8} ,\; \; x^2-\frac{9}{8}>0\\\\(x-\frac{3}{2\sqrt2})(x+\frac{3}{2\sqrt2})>0\\\\x\in (-\infty,-\frac{3}{2\sqrt2}})U(\frac{3}{2\sqrt2},+\infty)\; ,\; \; \frac{3}{2\sqrt2}\approx 1,07\\\\Otvet:\; x\in (-\sqrt2,-\frac{3}{2\sqrt2}})U(\frac{3}{2\sqrt2}},\sqrt2)" alt="log_2(x^2-1)>-3,\; -3=log_22^{-3}=log_2\frac{1}{8}\\\\x^2-1>\frac{1}{8} ,\; \; x^2-\frac{9}{8}>0\\\\(x-\frac{3}{2\sqrt2})(x+\frac{3}{2\sqrt2})>0\\\\x\in (-\infty,-\frac{3}{2\sqrt2}})U(\frac{3}{2\sqrt2},+\infty)\; ,\; \; \frac{3}{2\sqrt2}\approx 1,07\\\\Otvet:\; x\in (-\sqrt2,-\frac{3}{2\sqrt2}})U(\frac{3}{2\sqrt2}},\sqrt2)" align="absmiddle" class="latex-formula">
(834k баллов)
0

Половина текста пропала, пришлось восстанавливать....

0 голосов

Решение смотри на фотографии


image
(326k баллов)
0

ООФ неверно.