Помогите решить!Пожалуйста!!!!!
ОДЗ: xне равно 1 и 0, x>0 logx(9x^2)*log^{2}_[3](x)=4 log3(9x^2)*log3(x) = 4 (2+log3(x))log3(x)=4 Пусть log3(x) = a (2+2a)a=4 a^2 + a - 2=0 a1= - 2 a2=1 Возвращаемся к замене log3(x) = - 2 x1= 1 / 9 log3(x) = 1 x=3 Ответ: 1/9; 3
X>0 и x≠1 logx(9x^2)*(log3(x))^2=4⇒(log3(9x^2))/(log3(x))*(log3(x))^2=4 Сокращаем на log3(x): (log3(9)+log3(x^2))*log3(x)=4⇒ (2+2log3(x))*log3(x)=4⇒(1+log3(x))*log3(x)=2⇒ (log3(x))^2+log3(x)-2=0 D=1+8=9; √D=3 log3(x1)=(-1+3)/2=1⇒x1=3 log3(x2)=(-1-3)/2=-2⇒x2=3^(-2)=1/9