2cos^2 x - 3cos x + 1 = 0;
cos x=a, -1≤a≤1,
2a^2-3a+1=0,
D=1,
a1=1/2, a2=1,
cos x=1/2,
x=±arccos(1/2)+2πk, k∈Z,
x=±π/3+2πk, k∈Z,
cos x=1,
x=2πk, k∈Z;
3sin^2 x + sinx × cosx = 2cos^2 x;
3sin^2 x + sinx × cosx - 2cos^2 x=0;
3(sin x/cos x)^2 + sin x/cos x -2=0,
3tg^2 x + tg x - 2=0,
tg x=a,
3a^2+a-2=0,
D=25,
a1=-1, a2=2/3,
tg x=-1,
x=arctg(-1)+πk, k∈Z,
x=-arctg1+πk, k∈Z,
x=-π/4+πk, k∈Z,
x=arctg(2/3)+πk, k∈Z.